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Abstract 

There is a semiclassical instability in models of compactified spaces with 

Casimir or Monopole compactifications. Previous claims of stability 

are wrong because they have been based upon metric am&e that are 

singular (gm -+ 0) in the liiit of large size of the internal space. A 

non-singular metric ansatz is proposed that demonstrates explicitly this 

instability. With the new snsatz gss is free of singularities in the limit 

of large internal dimensions, and the kinetic term for the 4-dimensional 

gravitational field is independent of the scale of the extra dimensions. 



1 Introduction 

If the fundamental theory of nature is a ‘higher-dimensional” one with extra spatial 

dimensions, it is necessary to hide the extra dimensions. The usual mechanism 

for hiding the extra dimensions is to assume that they form a compact internal 

space that has a physical size small enough to escape detection. For currently 

availableenergies at accelerators, this requires a size smaller than the Fermi length of 

about 10-‘scm. Thii would not be surprising, since in almost all extra-dimensional 

theories the fundamental length scale is set by the Planck length, Ipi E Gz* = 

1.616 x 10-33cm. In the limit that the physical size of the internal space is smaller 

than the physical size of the external space, it is possible to dimensionally reduce 

the system (integrate over the extra dimensions) and obtain an “effective” 3 + l- 

dimensional theory. 

Theories with extra spatial dimensions are many and varied. However all have 

common features of relevance for cosmology: 

There are large spatial dimensiona and small spatial dimensions. The aasump- 

tion that the extra dimensions form a compact space is quite reasonable since if the 

Universe is closed (ll > l), the three observed spatial dimensions form a compact 

space (a 3-sphere, S3). The remarkable thing is that there is such a disparity in the 

sizes - 10e3%m for the internal space and more than lO%m for the external space. 

The fundamental constants we observe today are not, truly fundamental. In the- 

ories with extra dimensions the truly fundamental constants are the ones in the 

higher-dimensional theory. The constants that appear in the effective four dimen- 

sional theory are the result of integration over the extra dimensions. If the volume 

of the extra dimensions would change, so would the “observed” constants. 

The internal dimensions are static. Since any change in the size of the internal 

space would result in changes in the observed constants, the extra dimensions must 

be static, or have changed very little since the time of primordial nucleosynthesis. 

The curious cosmology that emerges is one that has some dimensions large and 

expanding, and some dimensions small and static. Since expansion (or contraction) 

is the generic behavior expected, the challenge for cosmologists involves constructing 

models that have static extra dimensions. The basic approach is to assume that 
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the higher dimensional theory is that of gravity plus a cosmological constant.’ The 

extra dimensions are held static due to the interplay between the cosmological 

constant and either classical2 or quantum3 fields. Although the true mechanism 

in more complicated theories such ss superstring models might be more complex, 

there must be some vacuum stress keeping the extra dimensions static. The toy 

models studied here may very well be relevant. 

In the models that have been studied, the present ground state size of the extra 

dimensions is stable against small fluctuations of the size of the internal space, but 

not necessarily stable against large dilatations of the compact space.’ This leads to 

the possibility that there is a semiclassical instability that would start sa a quantum 

fluctuation of the internal space from its ground state value to a size larger than 

some critical value, followed by an evolution of the internal space (and the external 

space) in an expansion that is approximately exponential in time. Thus the present 

vacuum of a static internal space is a “false vacuum” and the “true vacuum” is 

exponential expansion of all dimensions. There is some probability that the radius 

of the internal space could “leak” through a barrier and begin to grow. 

This semiclassical instability wss first studied by Frieman and Kolb,’ who also 

calculated the lifetime of the vacuum against nucleation of a bubble of true vacuum. 

The calculation was performed by expressing the radius of the internal space as a 

scalar field, and using the well-known methods of the decay of the false vacuum in 

quantum field theory. This calculation was later criticized by Maeda,’ who claimed 

that quantum gravitational effects not considered in the Frieman-Kolb calculation 

could be important. The quantum gravitational effects arise because the effective 

4-dimensional gravitational action depends upon the size of the internal space. This 

dependence may be removed by a different ansatz for the metric. Maeda argues that 

this ansatz leads to a vacuum that is semiclazsically stable. 

In this paper we show that the metric ansatz employed by Maeda is inappropriate 

to study the problem of semiclassical stability because of a singularity in the metric. 

We propose a different snsatz for the metric that is free of the uncertainties of 

quantum gravity present in the Frieman-Kolb ansatz and free of the singularity 

problems in the Maeda ansatz. With this new improved ansatz the vacuum is 

semiclassically unstable. 
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In the next section we review two compactification schemes, “Casimir” com- 

pactification due to the interplay between a cosmological constant and the quan- 

tum Casimir effect, and monopole compactification due to the interplay between a 

cosmological constant and the monopole configuration of a Maxwell field. In the 

third section the equations of motion are developed for three snsitze for the metric. 

Different choices for the normalization of the scalar field proportional to the size of 

the internal space lead to different conclusions about stability. The correct physical 

choices lead to instability. The paper ends with a concluding section. 

2 General Approach 

We will start with a theory of gravity in N = D + 4 dimensions with a cosmological 

constant A (and in the monopole compactification scheme a Maxwell field). The 

gravitational part of the action is 

SC- & / dNw’3R + 24, 

where G is the gravitational constant in D + 4 dimensions, related to Newton’s 

constant G by G = GV: with Vi the present volume of the internal space. 

Since the basic goal is to study cosmological solutions to the Einstein equations, 

it is convenient to express the equations in the form6 

RMN = ~?TGSMN, (2) 

where 27~~ can be expressed in terms of a stress-tensor TMN and a cosmological 

constant A 

SMN = TMN - 
1 

~iLuNTpp - &&MN. 

We will assume that the metric is block diagonal, i.e, we can perform a 1+3+D- 

dimensional split. In this case the non-vanishing components of the stress tensor 

are proportional to the metric tensor with components given by 

Tij G -psgij 

T IrvE --PDSru . (4) 
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In terms of PI P3r and PD, 

S 00 = s I(D f 1)~ + 3~3 + DPD - PA] go0 

Sij = E b + (D - l)~3 - DPD + PA] g<j 

3p3 + 2pD + PA] S,w, 

where p., = A/gxc. 

Different compactification schemes result in different forms for p, ~3, PD. III the 

Casimir compactification scheme the cosmological constant is balanced by one-loop 

corrections to the action due to vacuum fluctuations of matter fields. For simplicity 

assume that the internal space is a D-sphere of radius b and volume VD = flDbD. 

In the limit that the radius of the internal space is much smaller that the radius of 

the 3-space, vacuum fluctuations give contributions3 

P = ClfnDb4+D 

P3 = -Cl/i&,b4+D 

PD = 4c,/DflDb4+D (Casimir). (6) 

Here c1 is a constant that depends on the number of fields present in the theory. 

For a single massless scalar field on S7, cl = 8.16 x lo-‘. 

The monopole compactification scheme involves the introduction of an antisym- 

metric tensor field of rank D - 1 with field strength FM,,,.,,, of rank D. The stress 

tensor for F is given by 

TMN = FMP...QFN 
P...Q 

- &mvFsp...~FSP-~q. 

This field has a natural Freund-Rubin ansatz’ on the D-sphere: 

F MN o = f@cw...< on the internal space . . . 
0 otherwise 

(7) 

where f is b-dependent, and glD) is the determinant of the metric for a unit D-sphere. 

The Bianchi identities require f = fo/bD, where fo is a constant (independent of 
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b). With the Freund-Rubin monopole ansatz in the limit a > b 

p = f,2/2blD 

p3 = -f;‘/2bzD 

PD = f;/2bzD (Monopole). (9) 

With all metric anslrtze the assumption is made that the curvature of the ex- 

ternal space is negligible, and that the metric for the internal space is that of a 

D-sphere. In general, the metric will be written in the form 

ds’ = g,dz”‘dz” - b’(l)@)dz“dz” 00) 

where b(t) is the radius of the D-sphere, and i,,” CD) is the metric for the D-sphere of 

unit radius. 

The simplest ansatz for g,,,,, is to assume that it is the usual d-dimensional 

Robertson-Walker metric with go0 = 1, and gij = -a*(t)@ where a(t) is the radius 

of the 3-sphere. This is the ansatz used by Frieman and Kolb. With thii ansatz 

the non-zero components of the Ricci tensor are (dot denotes d/dt) 

-l&i = 
[’ 
;+2$+&+$ gij 1 

-R,,” = 1 g,,v. 

Since the curvature of the external space will be neglected relative to the curvature 

of the internal space, the 2/a* term in the ij equation will be ignored hereafter. 

Using the three equations (00, ii, pu) RMN = ~&S,UN it is possible to search 

for static solutions.* The search for static solutions involves finding the value(s) of 

b that result in all time derivatives equal to zero. For the Casimir csse the Einstein 

equations give 

3i.D; = 

- 
;+2$ +D$ = 
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8xc ;+(D-1);+3;; = o+2 4(D + 2)c1 b-4-D + pI _ D - 1 Dn .I --p--’ WI 
D 

Note that the curvature term for SD (a l/b*) has been moved to the right hand 

side of the PV equation where it belongs, sa it acts as a stress. The static solution 

obtains when the right hand side of Eqns. (12) vanish. This occurs at b = bo, where 

b2 = 87d4 + D) 
0 D(D - 1) 

1;,= ((D~2)cIp*)-z’(4+D~. 

In terms of bo, Eq.(12) can be written ss 

3;+D; = -(D- l)b;* 
[&(g”“-&i] 

;+2!2+4 = -(D-l)&* 
[si$)““-is] 

;+(D-1);+3$ = (D-I)b,* 

Of course at b = bo the right hand side of all the equations vanish and a = 

b =constant is a solution. 

There are two other interesting solutions to the system of equations. At b = 

21/(D+2)bo the r.h.s. of the /.LY equation vanishes, while the r.h.8. of the 00 and ij 

equation are equal to 

Hz = W - 1) -2 
3 4 + D b, [l - 2-lD+‘)/P+~) 1. 05) 

This value of b results in a solution with b static and a(t) (x exp(Hst/ti). There 

is also another interesting solution to the equations in the limit b >> bo. If b > bo, 

the right hand sides of Eqs.(l4) are all equal to 

Hz = b-zD(D - 1) 
N 0 4+D ’ 



which results in the solution a(t) IX b(t) 0: ap(HNt/&). 

It is most easy to visualize the behavior of the scale factors by constructing a 

“potential” for b. The /AV equation can be cast in the form of the classical equation 

of motion of a scalar field under the influence of some potential. For instance, if we 

choose to define a scalar field x = ln(b/bo), then the PV equation becomes 

2 + (D - 1)k2 + 3ik = (D - l)b;z [&e-(4+Dlr + & - e-r,] . (17) 

With the identification of the r.h.s. of Eq.(17) as -dV(x)/dx, the equation appears 

as the classical equation for the evolution of a scalar field x in an expanding universe 

with a friction term. The potential is given by 

V(x) = (D-l)b;r (4 :D)1e-(4+DlX - &x - $eezx + 

where the constant term has been added to make V(0) = 0. This potential is shown 

in Fig. 1. The three interesting solutions rue easy to identify. The static minimum 

at b = bo (x = 0) is stable against small perturbations. The local maximum of the 
potential corresponds to the solution with b static and a expanding exponentially. 

It is an unstable solution. Finally, at large b the potential is unbounded from below, 

and the solution of the equations correspond to exponential expansion of both a 

and b. 

The monopole compactification scheme2 leads to a potential with all the features 

of Casimir compactificati0n.s 

The potential suggests that if b was ever larger than some critical value, it (and 

a) would expand forever. This suggests that there is a semiclassical instability in 

the compactification models. Imagine that today b = bo. There should be quantum 

fluctuations of b about bo. If the fluctuation is large enough, b will not relax to bo, 

but would be -over the hump” and expand forever. To actually study the possibility 

of semiclassical tunnellmg of the vacuum, it is necessary to correctly normalize the 

scalar field. This is the subject of the next section. 

3 Scalar field dynamics 

Everyone agrees that the key to the choice of the normalization of the scalar field is 

to have the kinetic term of the scalar in the “correct” form, but there is disagreement 
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on what the correct form is. Here we present the two forms that have been used 

involving different ansHtze for the metric, and mention problems with each choice. 

Then we propose a third ansatz free of the problems of the previous ones. This 

ansatz leads to a vacuum that is semiclassically unstable. In the final section we 

calculate the rate for vacuum leaks. 

The first choice we will consider is the one made by Frieman and Kolb. The 

metric is of the form 

ds’ = dt* -a*(t)&: - b’(t)d$, (19) 
where de is the proper distance for the G-sphere and a (b) is the radius of the 

external (internal) space. The non-vanishing components of the Ricci tensor are 

given by Eq.(ll). The Ricci scalar is 

-R=~~+~~+ZD~+D(D-~)~+~D~~+ 
D(D - 1) b2 , 

and 

fi = a3(t)bD(t)JZr(D)@. (21) 

Upon integration over the extra dimensions, the effective 4-dimensional action 

is 

s4 = -&/d4zfia3(f)($)D[14-2Di 

-D(D-1);+6D$+... , 1 (22) 

where . . . includes the cosmological constant, the curvature term for SD, and 

the other terms from Casimir or monopole effects. R4 is the 4diiensional Ricci 

scalar (the first two terms of R). Note that the 4diiensional Newton’s constant, 

G = c/Vi enters. Due to the presence of the (b/b)D term, the first term is 4- 

dimensional Einstein gravity only at b = bo. If b # bo the “effective” Newton 

constant would change. If b is not static, the dynamics of theory is fundamentally 

different from 4-dimensional Einstein gravity. This is not a fault of the ansatz, but 

it is a fundamental feature of the higher-dimensional theory. 

Upon integration by parts, the 4-dimensional action contains a term 
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Sk = -D(D - 1) 16n a/d4q/$a3(t) (:)“-‘(i)’ 

If the scalar field 4 is defined as 

4E [Gy (!JD’*mp,, 

(23) 

it will have a canonical (but for a sign) kinetic term. This is the choice for the 

normalization proposed by Frieman and Kolb. 

With this choice for 4, the 8 equation becomes 

~+3P~+$2!Lp, 
a 

which results in a potential given by 

V(d) = (i$;‘a,)2 ‘DE, l) mi~{($-6’D-($-)’ 
+~[(~)“D-*““-l]}, (26) 

where 4s s qS(bo), and a constant has been added to the potential to make V(&) = 

0. This potential is unbounded from below, and the present vacuum d = &, is 

semiclassically unstable. 

Although the kinetic term for 4 is Yorrect” , the kinetic term for gravity is not, 

due to the (b/bo)D term. Maeda claims that the approximation that 4-dimensional 

quantum-gravitational effects can be ignored is a bad one, and that inclusion of the 

effects stabilizes the potential. 

Maeda removes the offending term by using a different metric ansatz. He per- 

forms a conformal resealing of the 4-dimensional part of the metric by a factor of 

bmD.lo The metric used by Maeda is 

[drl* - a’(q)dl’j] - b*(r])d$,. 
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This metric results in a Ricci tensor with non-vanishing components given by (prime 

denotes d/dq) 

SMN is unchanged from the previous ansatz .ll. The right hand side of the equations 

of motion (the three equations involving a’, b’, a”, and b”) is a factor of (b,,/b)D 

times the right hand side of Eq.(14). This extra factor comes from moving (b/bo)D 

to the right hand side of R MN = SX~SMN. In the limit of large b the right hand side 

of the equations of motion vanish, so the system admits the solutions a =constant 

b =constant in the large b limit. This is counter to one’s intuition. Starting with a 

N-dimensional theory of gravity with a cosmological constant, for large scale factors 

the energy density should be dominated by vacuum energy,‘r and static solutions 

should not exist. This is the first hint that something is amiss. The trouble is that 

the time n is not the physical time. 

The equation of motion for b” can be used to find a potential for b similar to 

the potential of Fig. 1 for the previous ansatz. dV(b)/db for the new ansatz is 

equal to a factor of (b/4)-D times dV(b)/db for the previous ansatz. Again with 

the definition x = ln(b/bs) the potential in this case is 

V(x) = (D - l)bOr (D + ,lD + 2)e-z(D+*)z + $&eVDr 
[ 

1 --e-UJ+2h . 
D+2 1 

The potential is shown in Fig. 2. 

The potential in Fig. 2 has a local minimum that is stable against small pertur- 

bations, but not against large perturbations. The potential also has the feature that 

both dV(x)/dx and V(x) approach zero as x + co. This gives the impression that 
there is a static (approximately static) solution for b infinite (large). This result is 

due to the fact that as b -P co, go0 o( bsD + 0. If we define a time 1 that has go, = 1 
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(b/brJDd$ = dta, (30) 

then a’ = (b/b,,)-Di and b’ = (b/bo)-Db. It is possible to have a and b expanding 

exponentially in “time t” but static in “time n.” The basic point is that one must 

specify the “time” by which something is said to be static. With the choice of I] as 

time, the time slicing becomes singular in the large b limit. The physical time is t, 

not t). 

With the new ansatz for the metric, the Ricci scalar is given by 

-R = b-D 6; - D; + 6; + D(Dz+ 4); _ 3D;; + ,DD(;; ‘)I ,(31) 

and 

Jji = b-‘D(t)a3(t)bD(t)&i+$L 

The factor of beD in 4 cancels the factor of bD from R, and the explicit factor 

of b will not be present. Upon integration over the extra dimensions, the effective 

four-dimensional action becomes 

s4 = -&jd4q&a3(t) [il, +D; 
D(D + 4 jb12 

2 
F+3D;9+... , 1 (33) 

where iid is the Ricci scalar calculated from the metric g,,,,,: ds* = &,,,dz?dz” = 

dq* - a’(n)&. The first term in Eq.(33) looks like the canonical Einstein-Hilbert 

action. Of course, just because an expression has the familiar letters does not mean 

that it has the same physics of gravity. With the new ansatz, the true metric for 

the 3+1diiensional space is not ~,,,a, but rather (b/bo)-Dg,,. 

Upon integration by parts, the action contains a term 

Sk=-W’+2)~;, 2 y&%3(;). 
A scalar field 

d = 00 In(b/b,) = ~PI In(b/bo) (35) 
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will have a canonical action for a minimally-coupled scalar field. With this definition 

for o, the b” equation becomes 

uI’ + 34u1 _ ” = _ w4 -9 a 00 da 
with V(u) given by 

V(o) = (D - l)ugb;’ (D + ,,“(, + 2) e-2(D+z)0’00 
[ 

1 1 
+ -.ae-D+o - pe -(D+2)o/oo 

D-k4 D-k2 

(36) 

(37) 

The potential V(a) is similar to the potential of Fig. 2. V(0) and V(m) are 

degenerate global minima of the potential. Note that the potential for V(u) appears 

to be stable against tunnelling, since the potential energy at the minimum (u = 0) 

is equal to the energy at o = co. The nucleation of a bubble with u 1 0 would, in 

the course of its evolution toward large b, violate energy for an infinite amount of 

“time.” In other words the Euclidean action, Sz, is infinite. This would imply that 

the bubble nucleation rate per four volume, dI’/dV, 0: exp(-SE) is zero. However 

the four volume V, is the four volume of the metric i&, which does not describe 

the physical four volume, e.g., I] is not the physical time. Since dq = (b/bo)D/zdt, 

and in the large b limit the decay rate per physical four volume may be finite even 

if Sz is infinite. 

Another way to view the problem is that the microphysics of quantum mechanics 

is determined by the clock time t, not Q. Since dt = (b/b,,)-Dl*dq, the quantum 

uncertainty AEAt = AEAq (b/bo)-D/2 implies that in the large b limit, it is possible 

to violate energy for an infinite amount of time r). The time slicing is singular at 

large b, and since time and energy are cofiugate variables, one must be cautious 

about using energy conservation arguments at large b. 

We conclude that the metric ansatz used by Maeda is inappropriate to study 

the semiclassical stability question. 

It is possible to find a metric ansatz that has canonical kinetic terms for both 

the gravitational field and the scalar field, and also has go0 = 1. We propose the 

ansatz 
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ds’ = dt’ - b-2D/3(t)aZ(t)djj - b2(t)d& (39) 

With this ansatz the non-vanishing components of the Ricci tensor are 

-R,, = 

the Ricci scalar is 

-R = 6; + 6; + D(D3+ 3); _ 4 + “‘“,; l) 

and 

fi = a”(t)&iq~. (43) 

Upon integration over the extra dimensions, the effective 4-dimensional action 

is 

s4 = -&/d%&%(t) [&+ D(D3+3)$ 

where R1 is the Ricci scalar calculated with the metric &,,,, : ds2 = &,,ndzmdz” = 

dt* - a*(t)de. Again, the kinetic term for gravity does not depend upon b. Just 

ss with the previous ansatz, $ij is not the physical metric, since the true metric for 

the three space is (b/b,)-2D’3~ij. 

The kinetic term for b appears in S, as 

Sk=-D(D+3)mb, 
3 ,/d’&(;). 

A scalar field 

c= &h(b/bo) = [2D~~3)]1’*mp~In(b/b,,) 
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will have the canonical kinetic term. 

With this definition for < the scalar potential now reads 

V(() = (D - l)gb,* (4 +&-('+Dlrlc. 
[ 

-DL _ le-v/co + DZ f 80 + 8 
4-i-D&, 2 I 2(4+D)* ’ (46) 

This potential has the same functional form ss Eq.(18) shown in Fig. 1. The present 

vacuum ([ = 0) leaks. 

4 Conclusions 

A metric ansatz that results in a canonical kinetic term for both gravity and the 

scalar field and is regular in the b + 00 limit has a vacuum where the static ground 

state is metastable. 

It is straightforward to calculate the action for a nucleation of a bubble with 

b # 0. It is convenient to approximate the potential of Eq.(46) by a polynomial ln 

the region most relevant for tunnelling (from < = 0 to [ = &,, where C is the second 

zero of V(c)). For D = 7 the potential of Eq.(46) can be fit by 

V(t) N 0.183AE’ - 0.168A[3/mpl. (47) 

This potential is shown in Fig. 3 as the broken line and compared with the exact 

form of the potential Eq.(46) shown as the solid line. The coefficients of e2 and ES 

were chosen to have the same values of V(e) at the maximum and to have the same 

values of & = 0.31. 

Eq.(47) has the general form V(c) = Mz[*/2 - 6c3/3. The tunnel action for 

such a potential has been calculated by Linde, I3 SE u 205M2/6’, or in terms of A 

and mp,, SE = 294m;,/A. 

On dimensional grounds the pre-factor must be of order rn& and the decay rate 

per unit four volume is 

- - m$, exp(-SE) = m;, exp(-294miJA). 
dV4 - 
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In a matter-dominated Universe the probability for decay becomes of order unity 

in a time r given by r-4 = dI’/dV4, or r = t~1exp(74&/A). This is longer than 

the age of the Universe only if A 5 0.53m&. Using the relation between A and 
ci (A = 5.22m;{/ci for D = 7), in order for the internal dimensions to stay small 

for a long enough time requires ci 2 9.9. For S’ a single scalar field contributes 

cl = 8.16 x 10w4, so there must be more than 12,069 scalar fields. 

With the ansatz used by Frieman and Kolb, the scalar field potential is given 

by Eq.(26) and the tunnel action is S z = 165&/A. With the new ansatz the 

potential is more stable, but still semiclassically unstable. 

Finally, it should be emphasized that the four metric &,,, is not the complete 

picture. For instance, from the higher-dimensionalmetric Eq.(39), the physical scale 

factor of the external three-sphere is bmDj3a, not a which is the scale factor of &,. 

In the limit b -+ 00 the equations of motion with the ansatz Eq.(39) give a(t) cc 

exp(H~mt/3), and b(t) 0: exp(H&/m where HN is given by Eq.(16). 
Although a and b increase at a different rate, the physical radius of the external 

space, beD13a increases as e~p(H~t/m. As expected, the physical scale factors 

increase at the same rate as in the original ansatz ds* = dt* - a2(t)dg - b’(t)dl%. 
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Figure Captions 
Fig. 1: The potential of Eq.(lE) for D = 7. 

Fig. 2: The potential of Eq.(29) for D = 7. 

Fig 3.: A comparison between the potential of Eq.(46) given by the solid line, 

and the numerical fit of Eq.(47) given by the broken line. For both cases, D = 7. 

17 



FERMILAB-Pub-87/104-A 
June 1987 

Vacuum leaks in extra dimensions 

Edward W. Kolb 

NASA/Fern&b Aatrophysies Center 
Fermi National Accelerator Laboratory 

Batavia, IL 60510 
and 

Oaaervatorio Astronomico di Roma 
via de1 Parco Mellini 84 

00136 Rome, Italy 

Marco Litterio and Franc0 Occhionero 

Oeaervatorio Aatronomico di Roma 
via de1 Pare0 Mellini 84 

00136 Rome, Italy 

Abstract 

There is a semiclassical instability in models of compactified spaces with 
Csaimir or Monopole compactifications. Previous claims of stability 
are wrong because they have been based upon metric anscitze that are 
singular (gss + 0) in the limit of large size of the internal space. A 
non-singular metric ansatz is proposed that demonstrates explicitly this 
instability. With the new ansatz gss is free of singularities in the limit 
of large internal dimensions, and the kinetic term for the 4-dimensional 
gravitational field is independent of the scale of the extra dimensions. 



In a matter-dominated Universe the probability for decay becomes of order unity 

in a time T given by rT4 u dlT/dV4, or r u tplexp(74m&/A). Thii is longer than 

the age of the Universe only if A < 0.53m&. Using the relation between A and 

cl (A zz 5.22m&/cl for D = 7), in order for the internal dimensions to stay small 

for a long enough time requires cl 2 9.9. For S’ a single scalar field contributes 

cl = 8.16 x 10e4, so there must be more than 12,069 scalar fields. 

With the ansatz used by Frieman and Kolb, the scalar field potential is given 

by Eq.(26) and the tunnel action is SE = 165mg,/A. With the new ansatz the 

potential is more stable, but still semiclassically unstable. 

Finally, it should be emphasized that the four metric &,, is not the complete 

picture. For instance, from the higher-dimensionalmetric Eq.(39), the physical scale 

factor of the external three-sphere is bmD13u, not 4 which is the scale factor of a,,,,,. 

In the lit b -P oo the equations of motion with the ansatz Eq.(39) give u(t) o( 

exp(&mt/3), and b(t) cc exp(&t/m where HN is given by Eq.(lB). 

Although 4 and b incresse at a different rate, the physical radius of the external 

space, beDI increases as exp(HNt/m. As expected, the physical scale factors 

increase at the same rate as in the original ansatz de2 = dt’ - u2(t)& - b*(t)d&. 
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